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Abstract

Purpose – This paper aims to provide a limited, but selective bibliography on modelling heat and
mass transfer in composite fluid-porous domains.

Design/methodology/approach – Since the pioneer study by Beavers and Joseph, the problem of
interface continuity and/or jump conditions at a fluid-porous interface has been of interest to the fluid
mechanics and heat and mass transfer community. The paper is concerned both with numerical
simulations of heat and fluid flow in such systems, and with the linear stability problems.

Findings – The one- and two-domain formulations are equivalent. Using the Darcy-Brinkman
extension instead of the Darcy model reduces the number of ad hoc parameters in this configuration.

Research limitations/implications – The problem of double diffusive convection has still to be
solved and analyzed.

Practical implications – The discussion on the interface conditions is of great relevance to many
industrial and practical situations.

Originality/value – The important question of the macroscopic formulation of the problem is
tackled in the paper.

Keywords Heat transfer, Modelling, Composite materials

Paper type General review

Nomenclature
A ¼ aspect ratio of the vertical enclosure

(Section 3), H/L
C ¼ solute mass fraction, %wt
CP ¼ specific heat, J/kg K
D ¼ mass diffusivity of the solute,

m2/s
d*f ¼ thickness of the fluid layer (m)
d*m ¼ thickness of the porous layer (m)
d* ¼ total thickness, d* ¼ d*f þ d*m (m)
d̂ ¼ thickness ratio of the horizontal

layer (Section 4), d*f =d*m
Da ¼ Darcy number, K=H 2

g ¼ gravity vector, m/s2

H ¼ height of the enclosure, or thickness
of the homogeneous porous layer m

Ĥ ¼ dimensionless height of the channel,
H/h

k ¼ unit vector (vertical direction)
k ¼ thermal conductivity, W/(m K)
K ¼ permeability (m2)
L ¼ width of the enclosure, m
Le ¼ Lewis number: af=D
N ¼ buoyancy ratio: bCDC=bTDT
Nu(Sh) ¼ average Nusselt (Sherwood) numberR 1

0 2 ð›u=›xÞdz
R 1

0 2 ð›f=›xÞdz
� �

P ¼ dimensionless pressure
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Pr ¼ Prandtl number, n=af

RaT ¼ thermal Rayleigh number,
gbTDTH 3=afn

Ra*T ¼ Rayleigh number ¼ GrTPrDa
T ¼ dimensional temperature, K
V* ¼ dimensional fluid velocity (m/s)
V ¼ dimensionless fluid velocity

(V *H=af )
V*

m ¼ dimensional filtration velocity
w(u) ¼ vertical (horizontal) component

of V
x*P ¼ dimensional width of the porous

layer, m
xP ¼ dimensionless width of the porous

layer, ðx*P=LÞ
x(z) ¼ dimensionless coordinates,

x */H(z */H)

Greek symbols
af ¼ fluid thermal diffusivity, m2/s
am ¼ thermal diffusivity of the porous

medium, m2/s
a ¼ slip coefficient of the Beavers and

Joseph model
b ¼ stress jump coefficient
bT ¼ thermal expansion coefficient:

21=r0ð›r=›TÞ
bC ¼ solutal expansion coefficient:

21=r0ð›r=›CÞ
gS ¼ solid fraction
DC ¼ concentration difference
DT ¼ temperature difference
1 ¼ porosity of the porous layer
1T ¼ thermal diffusivity ratio,

1T ¼ af=am

k ¼ dimensionless wave number
mf ¼ dynamic fluid viscosity,

kgm21s21

meff ¼ effective dynamic fluid viscosity,
kgm21s21

n ¼ kinematic viscosity, m2/s
c ¼ stream function: u ¼ 2›c=›z;

w ¼ ›c=›x
f ¼ dimensionless concentration,

f ¼ ðC 2 C0Þ=DC
r ¼ fluid density, kgm23

s ¼ dimensionless complex growth rate
of the perturbation
j ¼ 1=

ffiffiffiffiffiffi
Da

p

u ¼ dimensionless temperature,
u ¼ ðT 2 T0Þ=DT

Q ¼ temperature perturbation

1. Introduction
Transport phenomena in composite domains consisting of a porous layer exchanging
momentum, heat and/or constituents with an adjacent fluid are encountered in a wide
range of industrial applications (thermal insulation, filtration processes, dendritic
solidification, storage of nuclear waste, drying processes, spreading on porous
substrates, . . .) or in the context of environmental problems (geothermal systems,
benthic boundary layers, ground-water pollution, . . .).

This presentation deals more specifically with problems of natural convection in
cavities or layers partially filled with a saturated porous medium. Following the
pioneering study by Beavers and Joseph (1967), the model for fluid flow and heat and
mass transfer in such media has to be analyzed in detail. We discuss the various
alternatives proposed in the literature to assess the conservation equations in such
domains. Depending on the fields of applications (insulation problems, solidification
processes, pollution of aquifers, petrol engineering, . . .), two approaches have been
developed. On one hand, a two-domain formulation which considers the porous
medium and the fluid as two distinct domains separated by a thin interface, where
specific boundary conditions have to be explicitly written. On the other hand,
a one-domain formulation combining the terms for the porous and the fluid domains in
a set of generalized conservation equations valid for both domains. The transition
from the porous to the fluid domain is defined by the spatial variation of the
thermophysical properties. In the second section of the paper, fluid flow and heat and
mass transfer due to double diffusion in a vertical enclosure is analyzed, and the
influence of the presence of an even very thin porous layer is shown. Finally, both
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formulations are compared in the case of the stability problem in an horizontal layer,
where the fluid layer is on top of the porous medium.

2. One-domain vs two-domain formulation
The underlying modelling problem lies in the coupling between conservation
equations in both regions and thus in the definition of appropriate boundary conditions
at the fluid/porous interface. An accurate description of the convective heat or species
transfer involved in the above-mentioned processes depends on the relevance of the
momentum transport model at the interface. Owing to its theoretical and practical
interest, the question of transport in porous media has been the subject of an intense
research activity, reviewed in general books (Kaviany, 1995; Nield and Bejan, 2006).
The two different approaches generally proposed to deal with this problem are
discussed in the present section.

2.1 The two-domain approach
The majority of early studies dedicated to flow in fluid/porous configurations have
dealt with the calculation of the drag force exerted by a fluid on a porous sphere
(Joseph and Tao, 1966). The study by Beavers and Joseph (1967) assesses the problem
of fluid flow in a rectangular channel including a porous layer, bringing special
attention to the boundary condition at the fluid/porous interface. The forced flow in the
channel (Figure 1) is described by the Stokes equation in the fluid and the momentum
equation in the homogeneous porous layer by the Darcy law. These partial differential
equations are of a different order and a slip boundary condition is proposed at the
interface:

›u*

›y*

����
y*¼0

¼
a

K 1=2
ðu*ð0Þ2 U *ð2H ÞÞ ð1Þ

where u *( y *) is the velocity in the fluid channel, U * the seepage velocity in the porous
medium, K the permeability of the porous medium and a an empirical dimensionless

Figure 1.
Poiseuille flow in a
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slip coefficient. A theoretical justification of condition (1) is given by Saffman (1971)
using a statistical approach and a boundary layer approximation.

In this approach, u *(0) is found to be very sensitive to the exact location of the
interface which is an unknown of the problem (Saleh et al., 1993). This dependence has
been numerically quantified by examining the axial and transverse flows near the
surface of 2D periodic porous media (Larson and Higdon, 1986; Larson and Higdon,
1987). Several studies have focused on the determination of the slip parameter a which
has been found to be strongly dependent on the local geometry of the interface (Beavers
et al., 1970; Taylor, 1971; Richardson, 1971) but not on the nature of the fluid (Beavers
et al., 1974). The experimental data provided by Beavers and Joseph (1967) are in good
agreement with the analytical solution, but it has been necessary to adjust the value of
a between 0.1 and 4 depending on the nature of the porous layer. This rather wide a
range shows the important role of the porous structure at the interface even for
materials having roughly the same macroscopic average properties in the core (Jäger
and Mikelić 2000).

An alternative model consists in using the Brinkman equation in the porous layer
(Brinkman, 1947; Neale and Nader, 1974):

0 ¼ 27P* þ rfg 2 mfK
21V* þ meff7

2V* ð2Þ

where meff is the effective viscosity of the porous medium and V* is the dimensional
filtration velocity vector. As the Stokes and Brinkman equations are of the same order,
continuity of both stress and velocity can be satisfied at the interface. The analytical
solution in the bulk fluid is then similar to the solution by Beavers and Joseph (BJ)
provided that a ¼ ðmeff=mfÞ

1=2. Equation (1) then becomes:

›u*

›y*

����
y*¼0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meff=mf

K

r
ðu*ð0Þ2 U *ð2H ÞÞ ð3Þ

This formulation accounts for momentum transport in the porous layer at a thickness d
estimated to be on the order of K 1/2. The validity of Brinkman equation has been the
subject of a controversial literature (Lundgren, 1972; Levy, 1981; Nield, 1983, 1991;
Vafai and Kim, 1990, 1995) which it is not relevant to detail here. Let us only recall two
main limitations: first, the Brinkman correction is significant only at high porosities,
secondly the effective viscosity, which depends on the structure of the porous material,
may strongly differ from the viscosity of the fluid. Although this latter aspect may be
important, only a few studies over the last 30 years have been devoted to the
determination of the effective viscosity (Larson and Higdon, 1987; Lundgren, 1972;
Adler, 1978; Koplik et al., 1983; Martys et al., 1994; Givler and Altobelli, 1994). Most of
them concern sparse porous structures or dilute suspensions where the reduced
viscosity is found to be close to Einstein’s (1906) law: meff=mf ¼ 1 þ 2:5gS where gS is
the solid volume fraction. For denser beds of spheres and suspensions, according to
Saffman (1971) and Lundgren (1972), the friction term does not only depend on
the velocity but also on its first derivative and the comparison with the Stokes
term allows for the determination of the effective viscosity, which is given by
meff=mf ¼ 1=ð1 2 2:5gSÞ for moderately dense suspensions. The evolution shows
a rapid decrease for gS $ 0.3 in a “dense” bed of spheres, attributed to the interactions
between particles that are not correctly described for dense systems. On the contrary,
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recent numerical calculations for relatively dense systems (0.2 # gS # 0.5) show the
monotonic behavior of the effective viscosity (Martys et al., 1994). The influence of the
flow through the Reynolds number also has been analyzed (Givler and Altobelli, 1994;
Sahraoui and Kaviany, 1992). The derivation of a correct law for the effective viscosity
is still under investigation (Starov and Zhdanov, 2001) and it probably depends on the
tortuosity of the medium (Bear and Bachmat, 1990).

If we now consider the stress boundary condition, the model proposed by
Ochoa-Tapia and Whitaker (1995a, b) introduces an interfacial jump condition based
on the non-local form of the volume averaged Stokes’s equation:

mf
›u*

›y*

����
y*¼0

2meff
›U *

›y*

����
y*¼0

¼ 2
bffiffiffiffi
K

p u*ð0Þ ð4Þ

where b is an adjustable parameter which must be experimentally determined
(Ochoa-Tapia and Whitaker, 1995a). This description assumes that the porous layer is
homogeneous, and comparing condition (4) to (3), it may be written:

›u*

›y*

����
y*¼0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meff=mf

K

r
ðu*ð0Þ2 U *ð2H ÞÞ2

bffiffiffiffi
K

p u*ð0Þ ð5Þ

The analytical solutions of this model are in good agreement with the experimental
results of BJ for b on the order of one. Unfortunately, no explicit dependence on the
geometry of the interface is provided. Actually, condition (4) is an equivalent
representation of the spatial variations of the porous structure at the interface (Goyeau
et al., 2003). Such a stress jump condition (4) may be used when inertia is significant
(Kuznetsov, 1997) or for a Couette flow in a composite channel (Kuznetsov, 1998).

Among the numerical studies describing the interfacial flow, James and Davis
(2001) use a singularity method to solve the flow field at the interface of a fibrous
porous medium. For very large values of the porosity (greater than 0.9) their analysis
mainly focuses on the slip velocity for both shear- and pressure-driven flows. In both
cases, it is found that the Brinkman model strongly overestimates the flow penetration
and the slip velocity (James and Davis, 2001).

2.2 The single-domain approach
In this approach, the porous layer is considered as a pseudo-fluid and the composite
region is treated as a continuum. The transition from the fluid to the porous medium is
achieved through a continuous spatial variation of properties, such as the permeability
in the Darcy term of the modified Navier-Stokes equations (Arquis and Caltagirone,
1984; Beckermann et al., 1987a, 1988). If the porous layer is assumed to be
homogeneous, this equation takes the form:

121 ›

›t
ðrfV*Þ þ 1227:ðrfV*V*Þ ¼ 27P* þ rfg 2 mfK

21V* þ meff7
2V* ð6Þ

where1 is the local porosity of the domain andV* is the dimensional velocity vector. In the
liquid channel, 1 ¼ 1, meff ¼ mf and the permeability is infinite, so that the Darcy term is
equal to zero and equation (6) reduces to the Navier-Stokes equation. In the homogeneous
porous medium, 1 is the bulk porosity and the effective viscosity value is given by the
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corresponding relations. Note that for finite values of the permeability, all the terms
involving the velocity are formally retained but the Darcy’s term is predominant.

Since, this formulation avoids the explicit formulation of the boundary conditions at the
fluid/porous interface, it has been extensively used in numerical computations dealing
with thermal natural convection (Beckermann et al., 1988; Turki and Lauriat, 1990;
Lebreton et al., 1991; Ettefagh et al., 1991; Kuznetsov and Ming-Xiong, 1999; Mercier et al.,
2002) or double diffusive convection (Gobin et al., 1998; Gobin et al., 2005). A good
agreement has been obtained in the comparison with experimental results (Beckermann
et al., 1987a, 1988; Song and Viskanta, 1994) using meff ¼ mf in the calculations.

2.3 Comparison of the velocity profiles
This short introduction to the state of the art in the field shows that the main features of
interfacial momentum transport are rather well understood. But it should be noted that
some fundamental issues concerning the correct formulation are still open and deserve
some attention. In the two-domain approach, often presented as more rigorous, the
solutions are in agreement with the experimental observations only after adjusting the
ad hoc parameters a or b. Those parameters are said to depend on the structural
characteristics of the porous interface, but no explicit relation has been provided so far.
Also it is still not clear in which situations the continuity of the velocity associated to a
stress jump condition (4) gives a better description than the models by Beavers and
Joseph (1967) or Neale and Nader (1974). On the other hand, the single-domain approach
remains questionable since the physical representation of momentum conservation in
the interfacial region depends on how the effective properties of the porous medium
spatially vary towards the thermophysical properties of the fluid phase porous medium
and thus on the accuracy of the discretization scheme in the interfacial region.

The purpose of this section is not to completely answer the above questions, but to
assess the general background of the problem formulation using the single- and the
two-domain approaches. A detailed discussion including a description of the interface
as a non-homogeneous medium is presented by Goyeau et al. (2003).

Here, we will just consider the basic configuration of the channel studied by BJ
(Figure 1). The saturated porous region is homogeneous and the flow is assumed to
be stationary and incompressible. Inertia effects in both regions are neglected.
The two-domain model uses the Brinkman equation in the porous layer, and the Stokes
flow in the fluid. If continuity is satisfied for shear stress and velocity at the
fluid/porous interface (Neale and Nader, 1974), the dimensionless dynamic boundary
conditions of the problem are given by:

uð1Þ ¼ 0 ð7Þ

U ð0Þ ¼ uð0Þ ð8Þ

›u

›y

����
y¼0

¼ a 2 ›U

›y

����
y¼0

ð9Þ

U ð2ĤÞ ¼ 2Da
dP

dx
ð10Þ

where Da ¼ K=h 2 is the Darcy number, K being the permeability of the porous layer,
Ĥ its dimensionless thickness ðĤ ¼ H=hÞ and a 2 ¼ meff=mf . The analytical solution of
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this two-domain model has been determined by Neale and Nader (1974). According to
the above assumptions, the momentum transport equation (6) for the single-domain
model also reduces to:

0 ¼ 2
dP

dx
2

1

Da
U þ a 2 d2U

dy 2
ð11Þ

in the whole channel, where the Da and a values depend on the domain. The numerical
approximation of this differential equation is based on a standard finite volume procedure.
The numerical results presented hereafter are obtained using regular or irregular node
distribution in the y-direction depending on the homogeneous character of the porous
layer. The verification of the numerical model has been performed using the exact
analytical solution of the Poiseuille flow when the porous wall is impermeable (Da ! 0).

The comparison between the numerical (Goyeau et al., 2003) and analytical (Neale and
Nader, 1974) results is presented in Table I which reports, for different Darcy numbers, the
slip velocity u(0) and the dimensionless thickness of the porous boundary layer:

d ¼
ffiffiffiffiffiffi
Da

p
ln

50 ð1=DaÞ2 2
� �

1 þ ða=
ffiffiffiffiffiffi
Da

p
Þ

" #a !
: ð12Þ

The agreement is also illustrated by the velocity profiles shown in Figure 2. The reduced
viscosity expression retained in the calculations, meff=mf ¼ 121, is obtained from the
Darcy-Brinkman model derivation using volume averaging (Whitaker, 1986; Quintard
and Whitaker, 1994).Other expressions for the reduced viscosity have also been used and it
is verified that the agreement with the analytical results does not depend on the particular
expression of the reduced viscosity. These results confirm that the single-domain
approach implicitly imposes shear stress continuity, as clearly shown in Figure 2. This
good agreement is the basis on which we rely to justify the use of the one-domain approach
in the studies on natural convection in such domains.

3. Vertical enclosures: flow structures and heat and mass transfer
One field of application of the issues discussed in Section 2 is the simulation of double
diffusive convection taking place in a confined enclosure partially filled with a porous
medium. Heat transfer and fluid flow through fibrous insulation (Lebreton et al., 1991),
natural convection heat and mass transfer in solidification (Beckermann et al., 1988), or
solute exchange in sediments in coastal environments (Webster et al., 1996) are some

Darcy number
Analytical solution

(Neale and Nader, 1974)
Numerical solution

(Goyeau et al., 2003)
Da u(0) d u(0) d

1.02 £ 1021 189.6 21.610 189.5 21.5954
4.50 £ 1022 116.8 21.218 116.73 21.218
1.97 £ 1022 72.70 20.888 72.60 20.888
1.10 £ 1022 52.46 20.704 52.38 20.704
9.50 £ 1023 48.38 20.660 48.31 20.663
6.70 £ 1023 39.96 20.575 39.88 20.575
5.00 £ 1023 34.10 20.510 34.02 20.509
2.68 £ 1023 24.43 20.390 24.30 20.392

Table I.
Comparison with the

analytical solution for
K ¼ 7.1 £ 1029 m2,

1 ¼ 0.78
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examples of the fields where transport phenomena take place at an interface between a
fluid phase and a porous medium. This is also relevant to a better understanding of
convective heat and solute transfer in the mushy zone of a solidifying multi-component
system, where natural convection is known to be driven by combined thermal and solutal
buoyancy forces in the fluid phase. This particular class of natural convection with two
buoyancy forces is also termed thermosolutal convection. We refer here to a simplified
model where there is no phase change and where the dendritic region is represented as an
homogeneous fixed porous medium.

It should first be noticed that very few experimental papers are available for such
situations (Beavers and Joseph, 1967; Chen and Chen, 1989; Tachie et al., 2003), and that
the main effort has addressed the numerical simulation of such flows. The problem of
thermal convection for such a configuration in a vertical enclosure where the porous
layer is parallel to the vertical walls has been studied in the context of wall insulation
(Arquis and Caltagirone, 1984; Sathe et al., 1988; Lebreton et al., 1991) or solidification
(Beckermann et al., 1987b, 1988; Song and Viskanta, 1994). An exact solution has been
proposed by Weisman et al. (1999) and the stability problem has been tackled by
Mercier et al. (2002). Numerical results for a vertical enclosure with two porous layers
have been presented by Merrikh and Mohamad (2002). All these studies make use of
the one-domain formulation.

Let us consider the simulation of double diffusive convective flows in a binary fluid,
confined in a vertical enclosure, divided into two vertical domains, one porous layer and a
fluid layer. Some studies are concerned with thermal insulation inside buildings, but the
fluid under consideration is a gas-air mixture (Pr ¼ 0.7) and the Lewis number is then on
the usual order of magnitude for gases: Le , Oð1Þ. This considerably limits the interest of
the results since the relevant features of double diffusion are related to high-Lewis
numbers fluids ðLe , Oð102ÞÞ for liquids or Le , Oð104Þ for liquid metallic alloys).
We will analyze some specific features of double diffusive convection in such a partially

Figure 2.
Velocity profile:
comparison between
numerical (single-domain)
and analytical
(two-domain) solutions.
Da ¼ 5 £ 1023, 1 ¼ 0.78
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Numerical solution, single-domain approach
Analytical solution, two-domain approach

Source: Goyeau et al. (2003)
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porous enclosure, emphasizing the influence of the characteristics of the porous layer and
the separate role of the double diffusive parameters.

3.1 Mathematical formulation
The geometry under consideration is the 2D rectangular cavity (height – H, total
width – L) shown in Figure 3, where the porous layer (thickness x*P) along the left wall
is assumed to be homogeneous and isotropic. The porous medium is saturated by the
binary fluid which fills the remaining of the enclosure. Different uniform temperatures
and concentrations are specified at the external vertical walls of the cavity, and zero
heat and species fluxes are assumed at the horizontal boundaries. The flow is assumed
to be laminar and incompressible, and the binary fluid to be Newtonian and to satisfy
the linear Boussinesq approximation:

r ¼ r0½1 2 bTðT 2 T0Þ2 bCðC 2 C0Þ� ð13Þ

Moreover, the porous matrix is supposed to be in thermal equilibrium with the fluid,
and the Soret and Dufour effects are neglected. The mathematical model results from
the coupled system of conservation equations derived from the one-domain approach
presented above, which considers the porous layer as a pseudo-fluid and the composite
region as a continuum, which leads to solve only one set of coupled equations.
Under the foregoing hypotheses, the macroscopic conservation equations both retain
the Darcy-Brinkman formulation in the porous layer and the Navier-Stokes equation
in the binary fluid, the expression of the permeability being a prescribed function
of space. In terms of the dimensionless variables defined in the nomenclature,
the steady state macroscopic conservation equations resulting from the present model
are written:

Figure 3.
Schematic description of

the problem
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7:V ¼ 0 ð14Þ

1

12Pr
ðV :7ÞV ¼ 2

7P

Pr
þ RaTðuþ NfÞk 2

1

Da
V þ

meff

mf
72V ð15Þ

V :7u ¼
keff

kf
72u ð16Þ

V :7f ¼
1

Le

Deff

D
72f ð17Þ

At the boundaries, zero heat or species flux conditions are prescribed at the horizontal
walls and Dirichlet boundary conditions at the vertical walls: u ¼ f ¼ 20.5 at the
porous medium external wall (x ¼ 0) and u ¼ f ¼ 0.5 at the vertical wall in contact
with the fluid (x ¼ 1/A).

The problem is characterized by the set of dimensionless parameters generally
defined for double diffusive convection in fluids, plus the parameters characterizing
porous media:

. the thermal Rayleigh number defined with the fluid properties, RaT;

. the buoyancy ratio N ¼ bCDC=bTDT ;

. the Prandtl and Lewis numbers of the fluid, Pr and Le;

. the Darcy number (dimensionless permeability) of the porous layer, Da; and

. geometrical parameters, the aspect ratio of the enclosure A, and the reduced
thickness of the porous layer, xP ¼ x*P=L.

mf, kf and Df refer to the dynamic fluid viscosity, thermal conductivity and molecular
diffusivity, respectively, while subscript “eff” refers to the corresponding effective
properties of the porous medium. The Nusselt and Sherwood numbers are the
dimensionless average heat and mass fluxes along the vertical walls.

The set of equations (14)-(17) is numerically solved using a standard finite volume
procedure. The detailed description of the method may be found elsewhere (Gobin et al.,
1998) and only specific features of the method are recalled hereafter. The method has
been successfully used by the authors to solve heat and fluid flow problems in fluids
and porous media in similar ranges of parameters. It has been first verified that
thermal and thermosolutal natural convection results for xP ! 1 at any value of the
Da number were in agreement with the standard Darcy-Brinkman version of the code
and it has checked that at high values of the Darcy number the results at any value of
xP were identical to the results obtained for the pure fluid problem. The calculations in
the non-homogeneous cavity have been compared for thermal convection against the
existing results (Lebreton et al., 1991). Depending on the permeability of the fluid layer,
the strong temperature, concentration or velocity gradients may be located in the
vicinity of the fluid-porous interface. Consequently, for low-permeabilities compound
meshes are used in order to limit the computational cost, and two distinct irregular
(generally sinusoidal) horizontal grids are taken in the porous layer and in the fluid
cavity. The number of nodes in each domain is a function of the Rayleigh numbers and
of the thickness of the porous region. Typical values range between 145 and 252 nodes
for the x-direction and from 202 up to 402 regularly spaced nodes in the z-direction, in
order to solve the multicellular structures.
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3.2 Influence of the porous layer thickness and permeability
The results presented here concern a standard reference configuration (RaT ¼ 106,
N ¼ 10, Pr ¼ 10, Le ¼ 100, A ¼ 2). As can be seen from the results displayed in
Figure 4 showing the variation of the Sherwood number for a given permeability of the
porous domain (Da ¼ 1025), the thickness of the porous layer has a significant
influence on mass transfer in the enclosure, even for small values of xP. This influence
is seen to be limited here to xP , 0.1, since for thicker porous layers (between 0.20 and
0.9) the Sherwood number is not very sensitive to xP.

The variation of the average mass transfer as a function of the Darcy number for
different values of the porous layer thickness (Figure 5) shows that when the
permeability of the porous layer increases from very low values (Da , 1029) to high
values corresponding to a fluid (Da , 1), the Sherwood number is continuously
increasing. A second feature is that, compared to the pure fluid cavity (xP ¼ 0,
represented here by the result at Da ¼ 1), the influence of the porous layer thickness on
the mass transfer decrease is essentially noticeable in the low-permeability range
(Da , 1026). In this range, the comments made on Figure 4 apply for different values
of the Darcy number. At higher permeabilities, the presence of the porous layer induces
a drastic decrease of the Sherwood number even for a small thickness (xP ¼ 0.1) of the
porous layer, but there is almost no sensitivity to xP. If we now consider the evolution
of the average heat transfer with the same variations of Da and xP ¼ 0.1 (Figure 6), the
first observation is that this evolution is no longer monotonous. The second
observation is the strong sensitivity of the heat transfer characteristics to the porous
layer thickness at all permeabilities in the [0.1-0.8] range. Note that for thick porous
layers (xP . 0.8) the average Nusselt number remains very close to the pure
conduction limit (Nu ¼ A ¼ 2) over a wide range of Darcy numbers, indicating the
absence of convective heat transfer in this range. This shows that the effect of
the porous layer thickness on the boundary layers is not the same for species

Figure 4.
Average mass transfer

variation as a function of
the porous layer thickness
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Figure 5.
Mass transfer variation
with permeability for
different porous layer
thicknesses at RaT ¼ 106,
N ¼ 10, Pr ¼ 10, A ¼ 2
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Figure 6.
Heat transfer variation for
the reference case
(xP ¼ 0.1)
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distribution and for the thermal field: we can show that this is due to the difference in
diffusion lengths for u and f and thus to the Lewis number.

In this section the analysis of the results is presented for the standard reference
configuration defined above (RaT ¼ 106, N ¼ 10, Pr ¼ 10, Le ¼ 100, A ¼ 2) and xP ¼ 0.1.
The evolution of the convective flow with increasing permeability results from the
competition between two opposing effects. First, the higher permeability results in a better
penetration of the porous layer by the flow and consequently the diffusive damping of the
imposed temperature and concentration difference in the layer is smaller. The effective
temperature and composition gradients governing the buoyancy forces is then expected to
grow and the flow to be accelerated, resulting in higher heat and mass transfer. This is
what may be observed on the Sherwood number. On the other hand, due to the difference
between the thermal and molecular diffusivities, the central recirculation loop driven on
the scale of the thermal boundary layer thickness is driven by a relatively smaller
temperature difference. Locally the ratio of the buoyancy forces decreases and the
intensity of the internal thermal loop is decreasing, and also the average heat transfer. The
double diffusive process is thus dominating the evolution. The foregoing analysis is
intended to refine the interpretation of this behavior in terms of the thermosolutal features
of the solution. First, when displaying the streamlines at different values of the Darcy
number, it is clearly seen (Figure 7) that the existence of a minimum is directly related to
the flow structure. In the neighborhood of the first minimum, one may observe that the
decrease in the Nusselt number is caused by a decrease of the main recirculation cell, due to
the formation of a low-velocity zone in the bottom part of the enclosure where the heat
transfer is mainly conductive. This “stagnant” zone is compositionally stratified as in
typical double diffusive problems (Gobin and Bennacer, 1996), while the heat transfer in
this region is mainly conductive. With the increasing height of the stagnant zone, the local
vertical concentration gradient decreases and gets destabilized by the lateral temperature
gradient, resulting in the formation of a secondary co-rotative cell and a sudden increase of
the Nusselt number. Then the formation process of a stagnant zone at the bottom of the
enclosure resumes at Da , 2 £ 1027 with the related decrease in heat transfer, until the
development of a third recirculation cell allows for a new enhancement of the average heat
transfer (Figure 7). Then, the increase in Darcy number results in a better penetration of
the porous layer by the flow, until, at very high permeabilities a fully symmetrical
tri-cellular structure characteristic of double diffusion in liquids is recovered.

3.3 Influence of the double diffusive parameters
As mentioned earlier, the specific features of double diffusive convection appear when
the characteristic diffusion lengths for heat and solute are different. The parameter

Figure 7.
Reference case – flow

structure (DC ¼ 0.1,
RaT ¼ 106, N ¼ 10,
xP ¼ 0.1, Le ¼ 100,

Pr ¼ 10, A ¼ 2)
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which governs the ratio between thermal and molecular diffusivity (the Lewis number)
is currently on the order of 102 or more, except for gases where Le , 1. In the latter
case, the scale of heat and solute boundary layers are similar and the buoyancy forces
have a merely additive effect. No multicellular structure is expected and the
dependence of the Nusselt number with permeability follows the same variation as the
Sherwood number, a smoothly monotonous increase, as shown in Figure 5. In this
section, we first study the influence of the Lewis number: even if the low and moderate
values of Le are not realistic, the comparison is intended to show its influence on the
heat and mass transfer characteristics. All the parameters are fixed, except for the
mass diffusivity, meaning that the solutal Rayleigh number is increased in the same
proportion as the Lewis number. The Sherwood number is uniformly increased with Le
(not shown) and we see (Figure 8) that the Nusselt number variation is similar at low
values (Le # 5), and the heat transfer is decreasing as Le increases, as expected from
the scaling laws in the solutally dominated regime (N . 1) (Bejan, 1985). The Nusselt
curve shows only one minimum for Le ¼ 10. It could be shown that the flow structure
remains monocellular but the mechanism is similar to the second minimum of the
reference case described above and the decrease in heat transfer is compensated
around Da ¼ 3 £ 1025 by the penetration of the porous layer.

The other interesting feature to be analyzed is the influence of the buoyancy ratio. It
is also well known that the double diffusive features of the flow are of mostly visible in
the intermediate regime between the heat transfer dominated (N ! 1) and the mass
transfer dominated N . .1) regimes, where both buoyancy forces are in competition.
The numerical results presented here concern positive values of N ranging from 1 to 10
for the same set of parameters, including Le ¼ 100 (Figure 9). Again the Sherwood
number (not shown) has the same qualitative behavior at different values of N except
that the increase in mass transfer occurs at smaller Da for higher N. If we consider the

Figure 8.
Heat transfer variation
with permeability for
different Lewis numbers
at N ¼ 10, RaT ¼ 106,
Pr ¼ 10, A ¼ 2, xP ¼ 0.1
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Nu curves (Figure 9), there is almost no difference between bCDC=bTDT ¼ 1 or 2,
for which the Nusselt number variation is monotonous. A minimum may be noticed
at N ¼ 3, but the limiting values (at Da , 1027 or Da , 1023) are also identical:
here only the solutal Rayleigh number is modified through N and it is known to have
little influence on the Nusselt number. At N ¼ 3, one could show that the flow structure
remains monocellular, a stagnant zone is formed at the bottom of the enclosure in
the intermediate range of permeabilities, which results in a decrease of the average heat
transfer. In this particular situation this zone remains stable, because the flow
penetration of the porous layer accelerates the fluid before the stratified zone gets
destabilized. For N ¼ 5, the flow structure exhibits three minima:

. the first minimum corresponds to the formation of a second cell;

. in the neighborhood of Da ¼ 1025 a stagnant zone is formed below the second cell
but this zone does not reach destabilization and the second cell increases again;

. around Da ¼ 1024 the flow penetration progressively increases the strength of
the first cell and the second cell finally disappears; and

. at high permeabilities the flow is mono-cellular.

The N ¼ 5 curve shows the transition between a globally monocellular flow structure
at N # 3 and the three-cell structure at N ¼ 10.

As a conclusion to this section, it can be shown that the influence of a thin porous
layer on the side of a rectangular enclosure has a remarkable influence on the heat and
mass transfer characteristics. Even if the conditions are significantly different from
those met in solidification processes, it seems to be important to carefully analyze those
features to understand the coupling between double diffusive convection and the
dynamics of solidification.

Figure 9.
Heat transfer variation

with permeability for
different buoyancy ratios

at Le ¼ 100, RaT ¼ 106,
Pr ¼ 10, A ¼ 2, xP ¼ 0.1
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4. Natural convection in superposed horizontal layers: the stability problem
A different class of problems combining adjacent fluid and porous layers deals with
natural convection in horizontal systems. The problem is relevant for instance to the
stability of solidification of a horizontal layer cooled from below. Although the classical
Rayleigh-Bénard problem in horizontal fluid or porous layers has been extensively studied
in the literature, there are relatively few studies concerning composite domains. Here, our
interest addresses the stability of the diffusive base solution in a two layer system
consisting of a horizontal fluid layer overlying a porous layer. In this case again the
coupling of the Navier-Stokes equation with the Darcy’s law (or one of its extensions)
through an appropriate set of boundary conditions at the fluid/porous interface is of
interest. The first study in this field is due to Chen and Chen (1988) who have shown that
the marginal stability curves, i.e. the critical Rayleigh number against the wave number
curves, exhibit two possible regimes. Carr and Straughan (2003) have considered the same
two-layer system, with a stress free boundary condition at the upper surface. To simulate
penetrative convection for water, they have adopted an equation of state which expresses
the density in the buoyancy force as a quadratic function of temperature. Carr (2004) made
an important extension to this work, considering penetrative convection via internal
heating. In spite of the difference in the physical quantities driving the motion between
these two studies, the results also exhibit the bimodal nature of the solution. The
alternative to the two domain description has been developed by Zhao and Chen (2001)
using the one domain approach. They could capture the bimodal characteristics of the
stability curves, but the values obtained with this latter model were about 30-40 percent
smaller than the critical values assessed in Chen and Chen (1988), reactivating the interest
for the comparison of the two formulations.

4.1 Problem formulation
Here, we use the two-domain formulation of the problem for the linear stability
analysis of thermal natural convection in superposed fluid and porous layers. Note that
if one wishes to handle spatial property variations (for example, evolving
heterogeneities) the one-domain formulation may be preferred (Hirata et al., 2006).
The system under consideration consists of a horizontal porous layer of thickness d*m
underlying a fluid layer of thickness d*f , with a total thickness d* ¼ d*m þ d*f . The
upper and lower walls are considered impermeable and are kept at temperatures T*

u
and T*

l , respectively. The porous medium is saturated by the same fluid which fills the
rest of the domain, and is supposed to be in thermal equilibrium with the fluid. Finally,
the fluid is assumed to be Newtonian and to satisfy the Boussinesq approximation and
the porous medium is supposed to be isotropic and homogeneous. The dimensionless
governing equations are written separately for the porous layer ð0 , y* , d*mÞ and for
the fluid region ðd*m , y* , d*Þ. When the Darcy-Brinkman formulation is retained
the effective viscosity meff is such that meff=m ¼ 1=1 (Whitaker, 1999).

The boundary conditions at the upper and lower boundaries are the imposed
temperatures and zero velocities. At the interface y* ¼ d*m, continuity of temperature,
heat flux, velocity, normal stress and tangential stress are imposed:

T* ¼ T*
m ð18Þ

kf
›T*

›y*
¼ km

›T*
m

›y*
ð19Þ
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V * ¼ V*
m ð20Þ

2P* þ 2m
›w*

›y*
¼ 2P*m þ 2meff

›w*m
›y*

ð21Þ

m
›u*

›y*
¼ meff

›u*m
›y*

ð22Þ

It is important to note that, when using the Darcy equation, the continuity of normal
stress does not include the viscous contribution in the porous region, and the continuity
of tangential stress is substituted by the BJ boundary condition (equation (1)).

In order to derive the perturbation equations, we impose perturbations to the basic
solution of the dependent variables:

j ¼ jð yÞ þ j0ðx; y; tÞ ð23Þ

where the overlined quantities represent the basic state and the primes denote the
perturbation profiles. The steady basic state is supposed to be quiescent:
�V ¼ 0 and ›=›t ¼ 0. The equations are linearized in the usual manner. After some
manipulations and eliminating pressure, the perturbation equations are:

(1) For the fluid layer:

›

›t
2 72

� �
72w0 ¼ GrT7

2
2u

0 ð24Þ

where 72
2 ¼ ›2=›x 2 in 2D and 72

2 ¼ ›2=›x 2 þ ›2=›z 2 in three dimensions:

›u 0

›t
þ

›u

›y
w0 ¼

1

Prf
72u 0 ð25Þ

(2) For the porous layer:

1

f

›

›t
2 h72

� �
72w0m þ

1

Da
72w

0

m ¼ GrT7
2
2u

0
m ð26Þ

ðr0CPÞm

ðr0CPÞf

›u 0
m

›t
þ

›u m

›y
w

0

m ¼
1

Prm
72u 0

m ð27Þ

Applying the normal mode analysis to the dependent variables, we assume:

ðw0; u0Þ ¼ ðW ð yÞ;Qð yÞÞf ðxÞe ikyþst ð28Þ

where W( y) and Q( y) are the amplitude of the velocity and temperature, respectively.
k is the dimensionless horizontal wave number and s is the complex growth rate.
We assume that the principle of exchange of instabilities holds, and the onset of
instability is in the form of steady convection (s ¼ 0). Substituting equation (28) in
equation (24)-(27), we obtain:

d4W

dy 4
2 2k 2 d2W

dy 2
þ k 4W ¼ k 2GrTQ ð29Þ
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d2Q

dy 2
2 k 2Q ¼

1 þ d̂

d̂ þ 1T

PrfW ð30Þ

h
d4W m

dy 4
2 2hk 2 þ

1

Da

� �
d2W m

dy 2
þ hk 4 þ k 2 1

Da

� �
W m ¼ k2GrTQm ð31Þ

d2Qm

dy2
2 k 2Qm ¼ 1T

1 þ d̂

d̂ þ 1T

PrmW m ð32Þ

with h ¼ meff=mf .
At the interface, the continuity conditions are as follows:

Q ¼ Qm ð33Þ

dQ

dy
¼

1

1T

dQm

dy
ð34Þ

W ¼ W m ð35Þ

dW

dy
¼

dW m

dy
ð36Þ

2
d3W

dy 3
þ 3k 2 dW

dz
¼

1

Da

dW m

dy
2 h

d3W m

dy 3
2 3k2 dW m

dy

� �
ð37Þ

d2W

dy 2
¼ h

d2W m

dy 2
: ð38Þ

A hybrid numerical-analytical solution for the eigenvalue problem resulting from the
stability analysis is proposed. The original set of coupled partial differential equations
is reduced into an infinite system of ordinary differential equations, using the GITT
method. This system is adequately truncated and numerically solved with
Mathematica (Wolfram, 1991).

The method of analysis and the numerical code have been verified by comparison
with the exact values for the limiting cases of the fluid Rayleigh-Bénard problem and
for the porous layer case (Hirata et al., 2007a). A similar procedure leads to the
corresponding sets of equations if the Darcy formulation is used in the porous layer
instead of the Darcy-Brinkman extension, or if the stress jump condition (4) is used at
the interface instead of the continuity condition.

4.2 The bimodal stability curve
The analysis deals with the influence of the thickness ratio and of the dimensionless
permeability of the porous layer (the Darcy number) on the stability of the system.
Calculations are performed for a given value of the Prandtl number (Pr ¼ 10), and in order
to be consistent with previous works (Chen and Chen, 1988; Zhao and Chen, 2001), the
marginal stability curves are presented in terms of the filtration Rayleigh number Ra*T.

As already observed by several authors, the marginal stability curve exhibits two
possible modes depending on the values of the characteristic parameters. Figure 10
shows the bimodal nature of the stability curve obtained with the present two-domain
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Darcy-Brinkman model, for two values of the thickness ratio d̂. The curve in Figure 10
ðd̂ ¼ 0:12Þ shows that the most unstable mode (minimum of the curve) is triggered for
small wave number perturbations (here k ¼ 2.5), corresponding to a “porous” where
the convective flow occurs in the entire porous region. For a slightly higher value of d̂
(not shown) large wave number perturbations are more critical and lead to small
wavelength cells, a “fluid” where the convective flow is mainly confined in the fluid
layer. The two modes are illustrated by the streamline patterns obtained for k ¼ 2.5
and k ¼ 25.5, shown in Figures 11(a) and (b), respectively. The large wave number
perturbation of results in small wavelength convection cells in the fluid layer with
some flow penetration in the upper region of the porous layer, while the small wave
number perturbation in case b affects the whole domain.

Concerning the influence of the Darcy number (not shown), it is found (Hirata et al.,
2006) that at large values of Da (very permeable media), the long-wave branch is the
most unstable, and the onset of convective motion is produced in the porous medium.
With decreasing permeability, flow penetration becomes more difficult and the
short-wave branch becomes the most unstable. Under these conditions, convective cells
develop within the fluid region.

4.3 Darcy vs. Darcy-Brinkman formulation
Figure 12 shows a comparison of the marginal stability curves obtained for the same
value of the geometrical parameter that, using the present Darcy-Brinkman formulation
and compared to the results obtained by Carr (2003) with the two-domain approach
using the Darcy formulation for three different values of the adjustable slip coefficienta.
Let us outline the relatively strong influence of the slip coefficient, since, in the
selected example, the most unstable regime may depend on the a value. It may be
observed that the stability curve obtained with the two-domain Darcy-Brinkman model

Figure 10.
Marginal stability curves
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(no adjustable parameter) is located between the curves given by the Darcy model for

a ¼ 1 anda ¼ 4. This result is fully consistent with the fact that the BJ condition and the

Neale and Nader model are compatible for a 2 ¼ meff=m ¼ 1=1. Here, 1 ¼ 0.39,

corresponding to a ¼ 1.6, which is in the correct range. This comparison shows the

superiority of the Brinkman extension to Darcy’s law, which does not require the use of

any adjustable parameter.

Figure 11.
Flow structure at the onset
of convection for 1T ¼ 0.7
and Da ¼ 1025
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The comparison between the results given by the one-domain model and the two-domain
formulation is still to be completed. Preliminary results show that the quality of the
results may depend on the rate of variation of the properties at the transition between
the fluid and the porous layer, and the accuracy of the numerical approximation in
this area has to be carefully verified.

4.4 The stress jump condition
As we have seen in Section 2, the two-domain formulation may account for a
non-homogeneous region in the vicinity of the interface. The integral form of this
permeability variation may be represented by the stress jump condition at the interface
proposed by Ochoa-Tapia and Whitaker (1995a) as equation (4). Asa in the BJ condition,
the parameter b in this equation describes the structure of the fluid-porous interface.
Comparing with the BJ experiments, Ochoa-Tapia and Whitaker (1995b) have shown
that the value of b is on the order of 1. (b ¼ 0 meaning continuity of the shear stress).

It is interesting to introduce this new condition in the analysis, and to see the
influence of the b value on the stability limit (Hirata et al., 2007b). This is shown in
Figure 13 of the filtration Rayleigh number for d̂ ¼ 0:10, Da ¼ 1025 and 1 ¼ 0.39.
As expected, the bimodal nature of the stability curve is obtained, each mode
corresponding to a different mode of convective instability. The figure shows that with
a larger stress jump coefficient the fluid mode is strongly modified, and the stability
limit is decreases at large wave numbers, while the porous mode remains unsensitive
to the b value. This may be explained considering that the spatial variation of the
permeability in the interfacial region through the jump condition (4) leads to an
increase of the interface velocity.

The influence of b for different values of the Darcy number is shown in Figure 14.
For small or for very large values of the dimensionless bulk permeability Da, the stress

Figure 12.
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Figure 14.
Influence of the stress
jump coefficient b for
different Darcy numbers
at d̂ ¼ 0:14
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Figure 13.
Influence of the stress
jump coefficient b for
d̂ ¼ 0:10, Da ¼ 1025 and
1 ¼ 0.39
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coefficient has little influence on the marginal stability curves. In these limiting cases,
the porous layer either tends towards a solid wall (small Da) and a no-slip condition
holds at the interface, or the porous media behaves as a fluid (large Da numbers) and
the interface disappears. For intermediate values of the Darcy number, it may be
observed that the influence of the jump coefficient on the marginal stability curves may
be significant. These results clearly illustrate the importance of the fluid-porous
interfacial modelling. This is particularly true for very irregular interfaces, where the
complexity of the microstructure has to be taken into account.

5. Conclusion
This brief overview on the heat and mass transfer problems with fluid flow in domains
filled with pure or binary fluids and including a porous partition (superposed layers
and composite cavities) shows that new features either in terms of stability limits or in
terms of heat and mass transfer characteristics and flow structures may be studied.

The problem of the single- vs two-domain formulation has been discussed. It seems
that, provided sufficient care is taken in the numerical approximations, both
approaches lead to similar results for the simulation of heat and fluid flow in
fluid-porous domains. Concerning the stability studies more work is requested to verify
this statement. This is still in the field of current research.
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